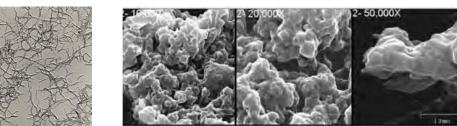
Lubricating Greases

György Pölczmann

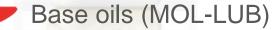
Agenda

- Definition of greases
- Composition and classification of greases
- Production
- Applications
- Development

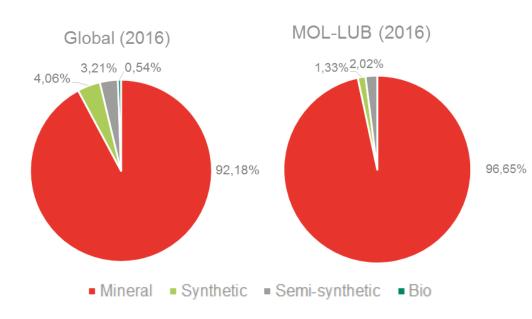
Definition of grease


- ASTM D288: "a solid to semifluid product of dispersion of a thickening agent in a liquid lubricant"
 - Dispersed phase: thickener
 - Continous medium: lubricant (base oil)
- Sinitsyn: "a lubricant which under certain loads and within the range of temperature application, exhibits the properties of a solid body, undergoes plastic strain and starts to flow like a fluid should the load reach the critical point and regains solid body properties after the removal of the stress"

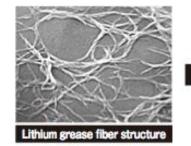
Ishchuk: dispersion of theickener and oil, where the dipersed phase:

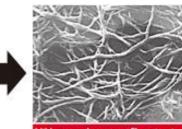

- Forms a 3D skeleton penetrating the dispersion medium
- Skeleton elements have colloidal sizes in two measuring directions
- Is held in solution by Van der Waals and capillary forces

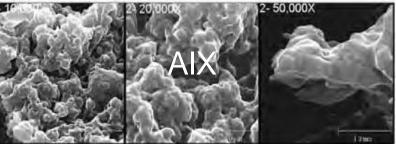
Composition



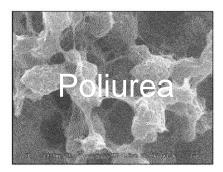
- Group I base oils (60-500 cSt V40)
- Group IV base oils (poly-alpha-olefins)
- Additives
 - Like conventional lubricant additives (EP/AW, polymers, corrosion inhibitors, etc.)
 - Other solid additives (graphite, molybdenum-sulfide.)


Classification of greases


- By composition
 - By base oil
 - Mineral
 - Synthetic
 - Semi-synthetic
 - Bio
 - By thickener
 - Soap thickeners
 - Conventional
 - Complex
 - Non-soap thickeners
- By NLGI consistency grade
- By application



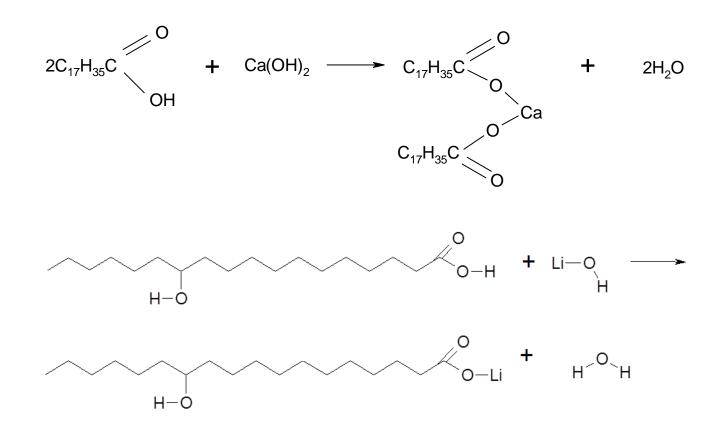
Type of thickeners



Lithium complex grease fiber structure

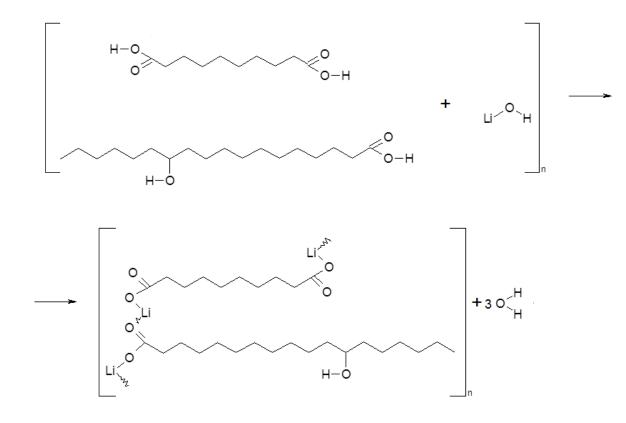
Typical characteristics of main thickeners

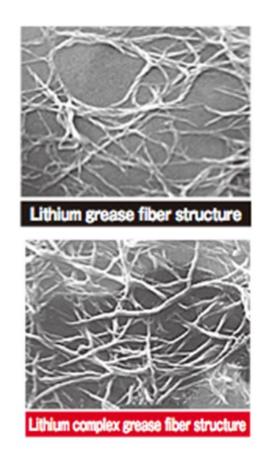
Thickener	High temperature application (°C)	Mechanical stability	Water resistance	Main application	
Lithium	120	good	good	Bearings	
Lithium-complex	140-160	✓ very good	good	Bearings	
Ca (hydrous)	60-70	moderate	good	Seals, chains	
Ca (unhydrous)	90-100	good	very good	Bearings	
Ca-complex	150-180	▼ good	▼ good	Bearings, seals, chains	
Calcium-sulphonate	140-160	very good	very good	Heavy industry, bearings	
Aluminium-complex	140-160	good	very good	Heavy industry, gears	
Bentonit	200-220	moderate	good	High temperature bearings	



Thickeners

Conventional metallic soaps


By reaction of a carboxylic acid and metal hydroxide

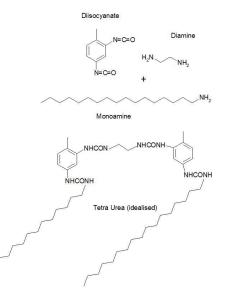


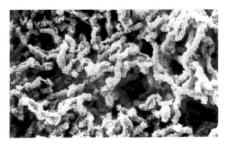
Thickeners

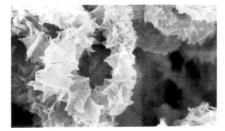
- Complex thickeners
 - Metallic soaps containing more than one anion

Thickeners

- Non-soap thickeners
 - Clays (bentonite)

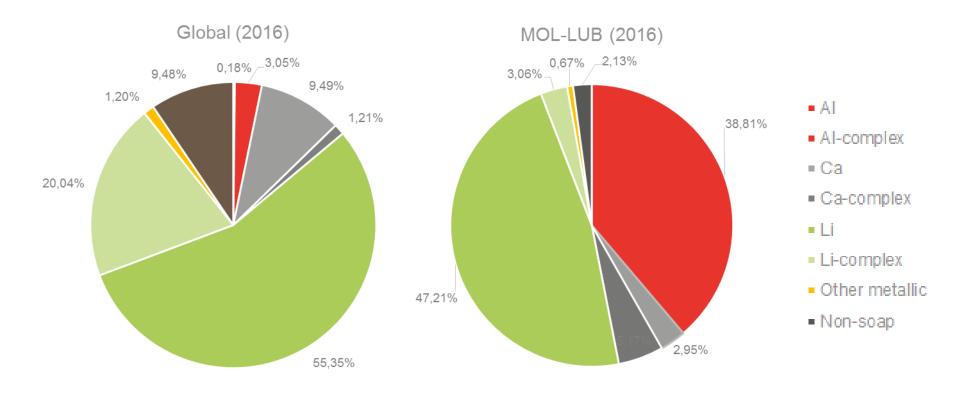






Polymers

- Polyurea
- ► PE, PP, PTFE



Ratio of manufactured greases by thickener type

Additive inload

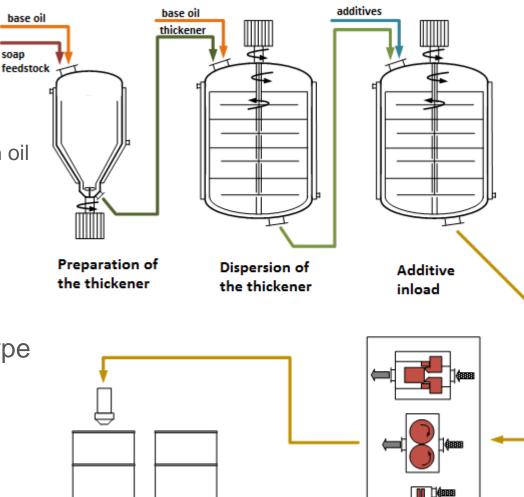
- Negatively affects grease structure and some grease properties
- Grease structure may collapse after a certain percentage
- More than one additiv could perform synergic or antagonistic effect with each other
- Additive efficiency depends on the type of the thickener and base oil

NLGI Consistency Grade

- NLGI: National Lubricating Grease Institute
- Penetration: after 60 strokes, at 25 °C

NLGI grade	Penetration [0,1 mm]	Appearance of grease
000	445-475	Fluid
00	400-430	Fluid
0	355-385	Very soft
1	310-340	Soft
2	265-295	"Normal" grease
3	220-250	Firm
4	175-205	Very firm
5	130-160	Hard
6	85-115	Very Hard

NLGI Consistency Grade


Production of greases

soap

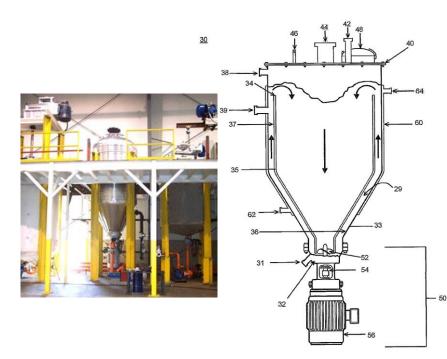
- Batch process
- Main stages
 - Preparation of the thickener
 - Dispersion of the thickener in oil
 - Cooling, additive inload
 - Homogenisation
 - Packaging
- Technology parameters

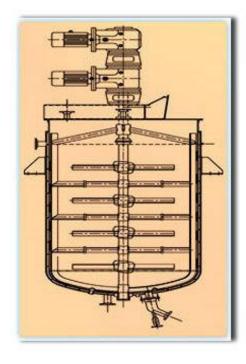
depending on the thickener type

 $T_{max} = 100-250 \ ^{\circ}C$ $P_{max} = 0.6$ barg

<u>0000000000</u>

Packaging

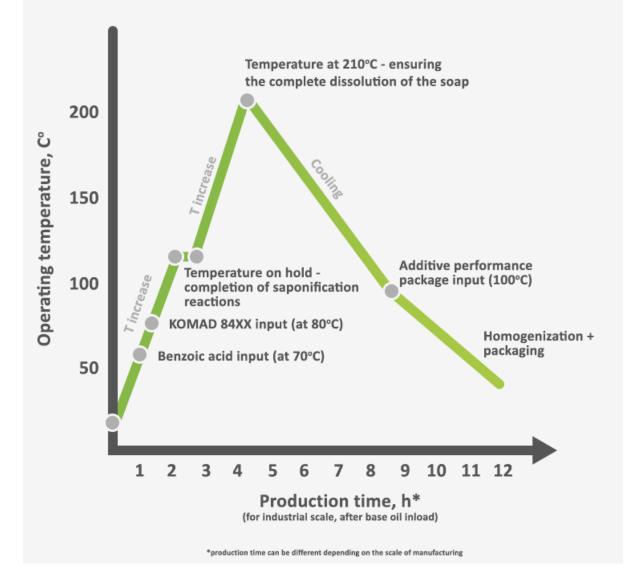



Homogenisation

Grease cooking vessels

Contactor (autoclave)

Duplicator



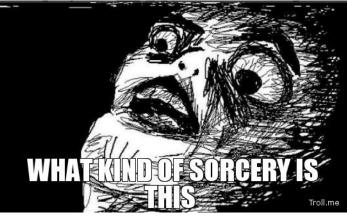
Production process of an Aluminium complex grease

Production process of a Li-12HSA grease

Preparation of the thickener

- Base oil inload (30 percent of base oils)
- 12-HSA) inload
- Mixing, heating
- LiOH inload
- Mixing, heating, pressurizing
- Temperature on hold
- Cooling and mixing at different rates
- Depressurizing

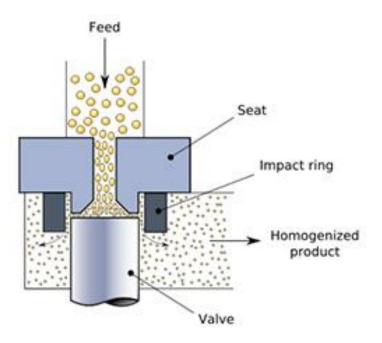
Dispersion of the thickener


- Base oil inload (the remaining 70 percent, cooling oil)
- Mixing, heating
- Polymer inload
- Heating, temperature on hold, intensive mixing

Cooling, additive inload

- Cooling and mixing
- Additive inload
- Cooling

Homogenizing


Packaging

Homogenisation

- Increases uniformity of the thickener distribution
- Improves appearance of greases
- Improves mechanical and colloidical stability
- Homogenizers
 - Pressing the grease through a narrow gap
 - Gaulin homogenizer

Analytics

- **Penetration**
 - Without strokes
 - After strokes
- **Dropping point**
- **Corrosion properties**
 - Copper
 - Steel
- **EP,AW** properties
 - 4-ball
 - Timken
- **Cold flow properties**
 - Flow pressure
 - Low temp torque
- **Oil separation**
 - **Under storage**
 - At high T
- Water resistance
 - Static
 - Spray-off

- SKF V2F
- FAG FE9
- SKF ROF, ROF+
- Water washout
- **EMCOR**

Grease packaging

Advantages of grease lubrication

- Resists leakage through dripping, splattering
- Acts as a seal against water and other contaminants
- Lubricating sealed for life bearings
- Might be biodegradable
- Reduces noise and wibrations

Grease lubrication is not appropriate when

- Bearing rotational speed is too high
- Cooling is needed simultanously with lubrication
- It is essential to reduce frictional loss in the bearing
- If the same machine uses lubricant oils

Application of greases

Antique and medieval applications (animal fats)

Industrial revolution: petroleum based products (fatty acids, distillates)

Application of greases

- Today: wide applications, special requests, wide portfolio
 - Synthetic oils, complex thickeners, polymers, zeolites, modern additives

Application of greases

Nowadays

- Thickener type
- NLGI grade
- Special demands
 - Food industry
- Main applications
 - Bearings
 - Propulsions
 - Chain drives
 - Cables

Type of thickener	T _{max} [°C]	Mechanical stability	Water resistance	Colloidal stability	
Na	120	Fair	Weak	Fair	
Са	60	Fair	Excellent	Good	
Ca complex	150-200	Fair	Good	Good	
Li	150	Good	Good	Good	
Li complex	150-200	Excellent	Good	Good	
AI	70	Weak	Good	Good	
Al complex	140-170	Good	Excellent	Good	
Polyurea	180	Good	Excellent	Good	
Bentonite	200-220	Fair	Good	Good	

Environmental requirements & answers

Inter-grease compatibility

	Al- komplex	Са	Ca- complex	Bentonite	Li (12-HSA)	Li- complex	Polyurea
Al-complex	-	I.	В	I.	I.	С	В
Са	l.	-	I.	С	В	С	В
Ca-complex	В	I.	-	I.	I.	С	С
Bentonite	I.	С	I.	-	I.	I.	L.
Li (12-HSA)	I.	В	I.	I.	-	С	В
Li-complex	С	С	С	I.	С	-	В
Polyurea	В	В	С	I.	В	В	-

C: compatible 1:

incompatible

B: limited compatibility

Selecting of lubricating greases

Environmental factors

Temperature Contamination Aggressive environment

Working conditions

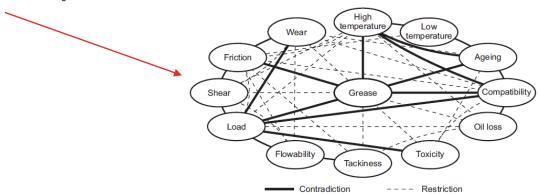
Load Speed Vibration

Maintance

Individual lubrication Central lubricating system Lifetime lubrication

Construction

Horizontal, vertical Configuration


Present lubrication (compatibility)

Grease development

- analysis of request (from various sources)
- rejection of non-realistic requests
- starting of development only a few requestor needs common work
- why would it be important?

continuous communication from both sides is a must because the complexicity!

Theoretical steps of grease formulation

- 1. choosing the viscosity of base oil
- 2. choosing the type of base oil
- **3.** choosing the thickener based on expected application, consistency and mechanical stability
- 4. balancing the oil and the thickener type based on expected thermaloxidation stability
- 5. additive selection to ensure the other expected properties

Grease tendencies in the future

Going to high performance greases

- Share of non-soap greases will slowly rise
- Application of synthetic base oil will slowly rise
- Slow decrease of grease use
 - (E.g.: automotive industry)
- Taking the environment into consideration more
- Developments based on special requests

